BREVET DE TECHNICIEN SUPÉRIEUR Épreuve de Mathématiques GROUPEMENT C

Durée: 2 heures

SPÉCIALITÉS	COEFFICIENT		
Agroéquipement	1		
Charpente couverture	1,5		
Communication et industrie graphique	2		
Étude et réalisation d'outillage de mise en forme des matériaux	2		
Industries céramiques	2		
Industries céréalières	2		
Industrie des matériaux souples (2 options)	1		
Industries papetières	2		
Mise en forme des alliages moulés	2		
Mise en forme des matériaux par forgeage	2		
Productique bois et ameublement	1,5		
Productique textile (4 options)	3		
Réalisation d'ouvrages chaudronnés	2		
Systèmes constructifs bois et habitat	1,5		

Dès que le sujet vous est remis, assurez-vous qu'il est complet.

Ce sujet comporte 3 pages numérotées 1/3 et 3/3. Plus le formulaire de mathématiques page 1 à 5.

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

CALCULATRICE AUTORISÉE

Sont autorisées toutes les calculatrices de poche, y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimantes.

Le candidat n'utilise qu'une seule machine sur la table. Toutefois, si celle-ci vient à connaître une défaillance, il peut la remplacer par une autre.

Afin de prévenir les risques de fraude, sont interdits les échanges de machines entre les candidats, la consultation des notices fournies par les constructeurs ainsi que les échanges d'informations par l'intermédiaire des fonctions de transmission des calculatrices.

Exercice I (9 points)

Partie A

On considère l'équation différentielle (E) : y'-2y=4x, où y désigne une fonction de la variable x définie et dérivable sur l'ensemble des nombres réels \mathbb{R} et y' sa dérivée.

- 1°) Soit l'équation différentielle (E') : y' 2y = 0. Résoudre l'équation différentielle (E').
- 2°) Déterminer les réels a et b tels que la fonction g définie pour tout x réel par g(x) = ax + b soit une solution particulière de l'équation (E).
- 3°) a) Résoudre l'équation différentielle (E).
 - b) Déterminer la fonction f, solution sur \mathbb{R} de l'équation différentielle (E) satisfaisant la condition : f(0) = 0.

Partie B

Soit la fonction f, définie pour tout x réel par $f(x) = e^{2x} - 2x - 1$.

- 1°) a) Déterminer la limite de f en $-\infty$.
 - b) Déterminer la limite de f en $+\infty$ (on pourra mettre 2x en facteur dans l'expression de f(x)).
- 2°) Soit f' la fonction dérivée de f. Calculer f'(x). En déduire les variations de la fonction f sur \mathbb{R} et le signe de f(x) suivant les valeurs du réel x.

Partie C

On note \mathscr{C} la courbe représentative de la fonction f dans un repère orthogonal $(O; \vec{i}, \vec{j})$ d'unités graphiques 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées.

- 1°) Montrer que la droite \mathscr{D} d'équation y=-2x-1 est asymptote à la courbe \mathscr{C} au voisinage de $-\infty$.
- 2°) Construire la courbe \mathscr{C} et la droite \mathscr{D} .
- 3°) On considère l'aire $\mathscr A$ du domaine plan délimité par la courbe $\mathscr C$, l'axe des abscisses et les droites d'équations x=0 et x=1.
 - Calculer la valeur exacte de \mathscr{A} en cm², puis en donner l'approximation décimale arrondie an centième.

Exercice II (11 points)

Les parties A, B, C et D peuvent être traitées indépendamment les unes des autres.

Une entreprise produit en série des axes de moteurs électriques. Cette entreprise possède trois machines, que l'on appellera E, F et G. Chaque axe est produit par l'une de ces trois machines.

Partie A Les machines E, F et G produisent respectivement 25 %, 35 % et 40 % de la production totale.

On constate, un jour donné de production, que les machines E, F et G produisent respectivement 1.5 %, 2.5 % et 3 % d'axes défectueux.

Montrer que la probabilité de prélever au hasard un axe défectueux dans la production totale de l'entreprise de ce jour est de 0,0245.

Partie B

Dans cette partie, on s'intéresse aux axes de moteurs électriques produits par la machine E.

La machine E se déréglant au cours du temps, on décide de noter chaque jour le pourcentage des axes défectueux produits. On obtient alors le tableau suivant :

Jours x_i	1	2	3	4	5	6	7	8
Pourcentage d'axes défectueux y_i	0,8	1,1	1,9	2,3	2,1	2,4	2,8	2,9

- 1°) Donner une équation de la droite de régression de y en x par la méthode des moindres carrés. (Les résultats seront arrondis à 10^{-3}).
- 2°) En admettant que l'évolution du pourcentage d'axes défectueux constatée pendant huit jours se poursuive les jours suivants, quel est le pourcentage prévisible, arrondi à 0,1 %, d'axes défectueux produits le onzième jour par la mach E?

Partie C

Dans cette partie, on s'intéresse aux axes de moteurs électriques produits par la machine F.

La machine F produit 2,5 % d'axes défectueux. On prélève au hasard, dans la production de la machine F, un lot de 50 axes. La production est suffisamment importante pour que ce prélèvement soit assimilé à un tirage avec remise. On note Y la variable aléatoire qui, à chaque prélèvement de 50 axes de moteurs électriques, associe le nombre d'axes défectueux.

- 1°) Déterminer la loi de probabilité de la variable aléatoire Y. Justifier la réponse.
- 2°) Calculer la probabilité que le lot contienne exactement deux axes défectueux (le résultat sera arrondi à 10^{-3}).

Partie D

Dans cette partie, on s'intéresse aux axes de moteurs électriques produits par la machine G.

La machine G est bien réglée si, dans la production d'une journée, la moyenne des longueurs des axes est de 350 millimètres.

Pour vérifier le réglage de la machine G on construit un test d'hypothèse bilatéral au risque de 5 %.

- 1°) a) Quelle est l'hypothèse nulle H_0 ? Quelle est l'hypothèse alternative H_1 ?
 - b) On note \bar{X} la variable aléatoire qui, à chaque échantillon de 100 axes prélevés dans la production de la machine G associe la moyenne des longueurs de ces axes. La production de la machine G est assez importante pour que l'on puisse assimiler ce prélèvement à un tirage avec remise. On suppose que, sous l'hypothèse nulle H_0 , la variable aléatoire \bar{X} suit la loi normale de moyenne 350 et d'écart-type 0,5.
 - Sous l'hypothèse H_0 , déterminer le réel h tel que $P(350 h \le \bar{X} \le 350 + h) = 0,95$.
 - c) Énoncer la règle de décision permettant d'utiliser ce test.
- 2°) On prélève un échantillon de 100 axes et on constate que la moyenne des longueurs des axes de cet échantillon est de 349. Peut-on au risque de 5 %, conclure que la machine G est bien réglée?