SESSION 2004

BREVET DE TECHNICIEN SUPÉRIEUR AGENCEMENT DE L'ESPACE ARCHITECTURAL

MATHÉMATIQUES

Exercice I (10 points)

Partie A

Soit (E) l'équation différentielle $2y' + y = 4e^{-0.5x}$, où y est une fonction de la variable réelle x et y' sa fonction dérivée première.

- 1°) Résoudre l'équation différentielle $(E_0): 2y' + y = 0$.
- **2°)** Montrer que la fonction h définie sur IR par $h(x) = 2x e^{-0.5x}$ est une solution particulière de (E).
- 3°) En déduire la solution générale de (E).
- 4°) Déterminer la fonction solution de (E) qui prend la valeur 1 en 0.

Partie B

On considère la fonction f définie sur l'intervalle [0; 4] par $f(x) = (2x + 1) e^{-0.5x}$.

On note C sa courbe représentative dans un repère orthonormal d'unité graphique 3 cm.

- 1°) Etudier les variations de f sur [0; 4].
- 2°) Déterminer une équation de la tangente T à la courbe C au point d'abscisse 0.
- 3°) Construire la droite T et la courbe C.

Exercice II (10 points)

La courbe C obtenue à l'exercice I représente à l'échelle 1/10 le contour du plateau d'un bureau de longueur 120 cm et dont la largeur maximale est d'environ 56,7 cm.

1°) Dans la production d'une journée, on prélève un échantillon de 50 plateaux dont on mesure les largeurs. On obtient les résultats suivants :

largeur	56	56,2	56,4	56,6	56,8	57	57,2	57,4
${ m en} \ { m cm}$								
effectifs	1	2	8	20	10	5	3	1

Calculer à 10^{-2} près la largeur moyenne et l'écart type de cette série.

 2°) On note X la variable aléatoire qui, à un plateau choisi au hasard dans la production, associe sa largeur exprimée en cm.

On admet que X suit une loi normale de moyenne m = 56, 7 et d'écart type $\sigma = 0, 3$.

Un plateau est déclaré conforme si sa largeur est comprise entre 56,2 cm et 57,2 cm.

- a) Calculer la probabilité qu'un plateau pris au hasard dans la production soit conforme.
- b) En déduire la probabilité qu'il ne soit pas conforme.
- 3°) Les plateaux sont conditionnés en paquets de 5 plateaux.

On assimile la constitution d'un paquet à un tirage de 5 plateaux successivement avec remise.

On admet que la probabilité qu'un plateau ne soit pas conforme est 0, 1.

On désigne par Y la variable aléatoire qui à chaque paquet de 5 plateaux associe le nombre de plateaux non conformes

- a) Justifier le fait que Y suit une loi binomiale; donner ses paramètres.
- **b)** Calculer à 10^{-2} près les probabilités : P(Y=0) et $P(Y \le 1)$.