Vecteurs colinéaires

Y. Moncheaux

Février 2023

Table des matières

Déterminant de deux vecteurs

- 2 Applications de la colinéarité
 - Parallélisme
 - Alignement

Quelques rappels pour commencer

Quelques rappels pour commencer



Quelques rappels pour commencer

Remarques

Quelques rappels pour commencer

Remarques

• Le vecteur $k.\vec{u}$ est « parallèle » à \vec{u} .

Quelques rappels pour commencer

Remarques

- Le vecteur $k.\vec{u}$ est « parallèle » à \vec{u} .
- Si k > 0 alors $k.\vec{u}$ a le même sens que \vec{u} .

Quelques rappels pour commencer

Remarques

- Le vecteur $k.\vec{u}$ est « parallèle » à \vec{u} .
- Si k > 0 alors $k \cdot \vec{u}$ a le même sens que \vec{u} .
- Si k < 0 alors $k \cdot \vec{u}$ a le sens contraire à celui de \vec{u} .

Soient $\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$ un vecteur et k un réel.

Soient
$$\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$$
 un vecteur et k un réel. Alors $k.\vec{u} \begin{pmatrix} kX \\ kY \end{pmatrix}$.

Soient $\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$ un vecteur et k un réel.

Alors $k.\vec{u} \begin{pmatrix} kX \\ kY \end{pmatrix}$.

Si
$$\vec{u} \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$
 alors $3\vec{u} \begin{pmatrix} -9 \\ 15 \end{pmatrix}$ et $-2\vec{u} \begin{pmatrix} 6 \\ -10 \end{pmatrix}$.

 \bigcirc Deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires s'il existe un nombre k tel que $\vec{v}=k\vec{u}$.

① Deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires s'il existe un nombre k tel que $\vec{v}=k\vec{u}$.

Remarque

Le vecteur nul est considéré comme colinéaire à tous les vecteurs car $\vec{0}=0\vec{u}.$

 $\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} X' \\ Y' \end{pmatrix}$ sont colinéaires si et seulement si leurs coordonnées sont proportionnelles donc

$$\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} X' \\ Y' \end{pmatrix}$ sont colinéaires si et seulement si leurs coordonnées sont proportionnelles donc s'il existe un nombre k tel que $X' = k.X$, $Y' = k.Y$

$$\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} X' \\ Y' \end{pmatrix}$ sont colinéaires si et seulement si leurs coordonnées sont proportionnelles donc s'il existe un nombre k tel que $X' = k.X$, $Y' = k.Y$

$$\vec{u} \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -8 \\ 5 \end{pmatrix}$

$$ec{u} egin{pmatrix} X \\ Y \end{pmatrix}$$
 et $ec{v} egin{pmatrix} X' \\ Y' \end{pmatrix}$ sont colinéaires si et seulement si leurs coordonnées sont proportionnelles donc s'il existe un nombre k tel que $egin{bmatrix} X' = k.X \end{bmatrix}$, $egin{pmatrix} Y' = k.Y \end{bmatrix}$

$$\vec{u} \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -8 \\ 5 \end{pmatrix}$ ne sont pas colinéaires car

$$\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} X' \\ Y' \end{pmatrix}$ sont colinéaires si et seulement si leurs coordonnées sont proportionnelles donc s'il existe un nombre k tel que $\boxed{X'=k.X}$, $\boxed{Y'=k.Y}$

$$\vec{u} \begin{pmatrix} 4 \\ -3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -8 \\ 5 \end{pmatrix}$ ne sont pas colinéaires car $-8 = \mathbf{-2} \times 4$ mais $5 \neq \mathbf{-2} \times (-3)$.

I – Déterminant de deux vecteurs

Définition

Soient, dans une base orthonormée, les vecteurs $\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$ et

$$\vec{v} \begin{pmatrix} X' \\ Y' \end{pmatrix}$$
.

I – Déterminant de deux vecteurs

Définition

Soient, dans une base orthonormée, les vecteurs $\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$ et

$$\vec{v} \begin{pmatrix} X' \\ Y' \end{pmatrix}$$
.

Le déterminant des vecteurs \vec{u} et \vec{v} est le nombre :

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} X & X' \\ Y & Y' \end{vmatrix} = XY' - YX'.$$

Si
$$\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -5 \\ -1 \end{pmatrix}$ alors

Si
$$\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -5 \\ -1 \end{pmatrix}$ alors

$$\det(\vec{u}; \vec{v}) =$$

Si
$$\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -5 \\ -1 \end{pmatrix}$ alors
$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 2 & -5 \\ -3 & -1 \end{vmatrix}$$

Si
$$\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -5 \\ -1 \end{pmatrix}$ alors
$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 2 & -5 \\ -3 & -1 \end{vmatrix} = 2 \times (-1) - (-3) \times (-5)$$

Si
$$\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -5 \\ -1 \end{pmatrix}$ alors
$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 2 & -5 \\ -3 & -1 \end{vmatrix} = 2 \times (-1) - (-3) \times (-5) = -17.$$

Questions rapides (ne pas noter)

Calculer le déterminant de
$$\vec{u} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 6 \\ -2 \end{pmatrix}$:
$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} \cdots & \cdots \\ \cdots & \cdots \end{vmatrix} = \cdots \cdots$$

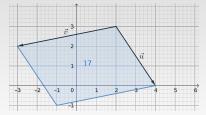
Questions rapides (ne pas noter)

Calculer le déterminant de
$$\vec{u} \begin{pmatrix} 1 \\ -4 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -5 \\ 1 \end{pmatrix}$.

Le déterminant des vecteurs \vec{u} et \vec{v} est, en valeur absolue, l'aire d'un parallélogramme « formé » par \vec{u} et \vec{v} .

Le déterminant des vecteurs \vec{u} et \vec{v} est, en valeur absolue, l'aire d'un parallélogramme « formé » par \vec{u} et \vec{v} .

Dans l'exemple précédent, $\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$, $\vec{v} \begin{pmatrix} -5 \\ -1 \end{pmatrix}$ et $\det(\vec{u};\vec{v}) = -17$ donc l'aire est 17.



Partie exercices

Exercices 56, 61 page 127

$$\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} X' \\ Y' \end{pmatrix}$ sont colinéaires si et seulement si leur déterminant est nul.

Démonstration

Supposons que
$$\vec{u} \begin{pmatrix} X \\ Y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} X' \\ Y' \end{pmatrix}$ sont colinéaires.

Si l'un des vecteurs est nul, par exemple $\vec{u} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ alors

$$XY' - X'Y = 0 \times Y' - X' \times 0 = 0.$$

Sinon il existe k tel que X' = kX et Y' = kY donc $\det(\vec{u}; \vec{v}) = XY' - YX' = X(kY) - Y(kX) = kXY - kXY = 0$.

Démonstration

Réciproquement, supposons que $\det(\vec{u}; \vec{v}) = 0$ donc que XY' - YX' = 0, c'est-à-dire que XY' = YX'.

- si X=0 alors XY'=0 donc YX'=0 donc Y=0 ou X'=0;
 - ullet si Y=0 alors $ec{u}=ec{0}$ qui est colinéaire à tout vecteur;
 - \bullet si X'=0 alors $\vec{u} \, \begin{pmatrix} 0 \\ Y \end{pmatrix}$ et $\vec{v} \, \begin{pmatrix} 0 \\ Y' \end{pmatrix}$ sont colinéaires
- ullet le même raisonnement s'applique si Y=0;
- si $X \neq 0$ et $Y \neq 0$ alors XY' = YX', devient, en divisant par X et par $Y: \frac{Y'}{Y} = \frac{X'}{X}$. Appelons k cette fraction, on a alors : X' = kX et Y' = kY donc \vec{u} et \vec{v} sont colinéaires.

$$\begin{vmatrix} 2 & -5 \\ -3 & -1 \end{vmatrix} = -17 \neq 0$$
 donc $\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -5 \\ -1 \end{pmatrix}$ ne sont pas colinéaires.

Questions rapides (ne pas noter)

$$\vec{u} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 6 \\ -2 \end{pmatrix}$ sont-ils colinéaires?

Questions rapides (ne pas noter)

$$\vec{u} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 6 \\ -2 \end{pmatrix}$ sont-ils colinéaires?

Deux rédactions possibles :

$$\vec{u} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 6 \\ -2 \end{pmatrix}$ sont-ils colinéaires?

$$\vec{u} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 6 \\ -2 \end{pmatrix}$ sont-ils colinéaires?

- on a $6 \div 3 = 2$ et $(-2) \div (-1) = 2$ donc $\vec{v} = 2\vec{u}$ donc \vec{u} et \vec{v} sont colinéaires.

$$\vec{u} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ sont-ils colinéaires?

$$\vec{u} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ sont-ils colinéaires?

$$\vec{u} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ sont-ils colinéaires?

$$\vec{u} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -2 \\ 4 \end{pmatrix}$ sont-ils colinéaires?

Deux rédactions possibles :

•
$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 3 & -2 \\ -6 & 4 \end{vmatrix} = 3 \times 4 - (-6) \times (-2) = 12 - 12 = 0$$

donc \vec{u} et \vec{v} sont colinéaires;

• on a
$$(-2)\div 3=-\frac{2}{3}$$
 et $4\div (-6)=-\frac{4}{6}=-\frac{2}{3}$ donc $\vec{v}=-\frac{2}{3}\,\vec{u}$ donc \vec{u} et \vec{v} sont colinéaires.

$$\vec{u} \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$ sont-ils colinéaires?

$$\vec{u} \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$ sont-ils colinéaires?

$$\vec{u} \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$ sont-ils colinéaires?

$$\vec{u} \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$ sont-ils colinéaires?

- $\bullet \det(\vec{u}; \vec{v}) = \begin{vmatrix} 4 & 8 \\ 0 & 1 \end{vmatrix} = 4 \times 1 0 \times 8 = 4 \neq 0 \text{ donc } \vec{u} \text{ et } \vec{v} \text{ ne sont pas colinéaires };$
- \vec{u} et \vec{v} ne sont pas colinéaires car $0 \times k = 0 \neq 1$ pour tout réel k.

Partie exercices

Exercice 70 page 129 Exercices 57, 58 page 127

Ne pas noter

Propriété

Soient A et B deux points de coordonnées respectives $(x_A; y_A)$ et $(x_B; y_B)$ dans un repère quelconque. Alors :

$$\overrightarrow{AB}$$
 a pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

Remarques

- retenez l'expression « extrèmité moins origine » ;
- pensez à vérifier les coordonnées du vecteur par lecture graphique.

II – Applications de la colinéarité

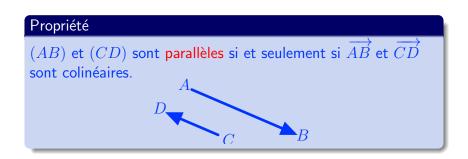
1) Parallélisme

Propriété

(AB) et (CD) sont parallèles si et seulement si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

II - Applications de la colinéarité

1) Parallélisme



Exemple 4

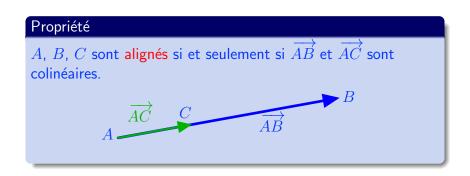
Soient, dans un repère $(O\;;\;\vec{\imath}\;,\;\vec{\jmath})$, les points $A\;(-1\;;\;2)$, $B\;(5\;;\;4)$, $C\;(5\;;\;-1)$, $D\;(2\;;\;-2)$. Démontrer que le quadrilatère ABCD est un trapèze.

2) Alignement

Propriété

A, B, C sont alignés si et seulement si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

2) Alignement



Exemple 5

Soient, dans un repère $(O ; \vec{\imath}, \vec{\jmath})$, les points A (-2; 1), B (1; 3), C (7; 7).

Démontrer que les points A, B et C sont alignés.

Partie exercices

Exercice 59, 60 page 127 Exercices 94, 93 page 133