TP : vecteurs et coordonnées

Légende :

J	
Travail sur Geogebra	Travail sur cahier

Exercice 1 : (re)découverte des outils liés aux vecteurs dans Geogebra

Outil	Action(s)
Affichage / Fenêtre Algèbre	Affichez (si elle ne l'est pas) la fenêtre Algèbre (partie gauche de la fenêtre de Geogebra)
1	Créez un vecteur quelconque. Geogebra doit nommer ce vecteur u.
Saisie:	Dans la zone de Saisie, tapez 3 u Remarque : Geogebra fait partir ce nouveau vecteur de <i>O</i> mais un vecteur est déplaçable.
1	Utilisez l'outil « Représentant » pour faire un copie du vecteur \vec{v} partant d'un autre point.
🕐 Saisie:	Tapez w=(4,1) et observez le résultat. (remarque : pour créer un point de cette façon, utiliser une lettre majuscule, exemple : $A=(4,1)$).

Exercice 2

Voici l'énoncé d'un exercice :

« Soient A(-3; 2), B(3; 0), C(5; 3) trois points. Construire le point D tel que

 $\overrightarrow{CD} = \frac{1}{2}\overrightarrow{AB} + 3\overrightarrow{BC}$ puis calculer les coordonnées de *D*. »

C	Résolution avec Geogebra
•	Créez les vecteurs \overrightarrow{AB} et \overrightarrow{BC}
🕐 Saisie:	Définissez $\frac{1}{2}\overrightarrow{AB} + 3\overrightarrow{BC}$
1	Construisez un représentant de ce vecteur partant de
	Quelles semblent être les coordonnées de <i>D</i> ?

Nous cherchons maintenant les coordonnées de D par le calcul. 1°) Calculez les coordonnées des vecteurs :
a) \overrightarrow{AB} puis $\frac{1}{2}\overrightarrow{AB}$; b) \overrightarrow{BC} puis $3\overrightarrow{BC}$; c) $\overrightarrow{CD} = \frac{1}{2}\overrightarrow{AB} + 3\overrightarrow{BC}$
2°) En déduire les coordonnées (<i>x</i> ; <i>y</i>) du point <i>D</i> .

Exercice 3

	1°) Créez les points <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> de coordonnées : A(-2;5) $B(4;4)C(7;0)$ $D(0;-3)2°) a) Créez les points E, F, G, H, milieux respectifs de [AB], [BC], [CD] et de [DA].b) Que remarque-t-on concernant le quadrilatère EFGH ?Déplacez le point A par exemple pour voir ce qu'il se passe.Remettez le point A a sa position initiale quand vous aurez fini.$
	3°) a) Calculez les coordonnées de <i>E</i> . b) Calculez les coordonnées de <i>F</i> .
C	c) Lisez sur le graphique (normalement, il faudrait les calculer) les coordonnées de <i>G</i> et <i>H</i> .
[
	4°) Prouvez par des calculs que <i>EFGH</i> est un parallélogramme.
	On se demande maintenant si <i>EFGH</i> est un rectangle.
	 5°) a) Calculez la longueur <i>EH</i> : donnez la valeur exacte, sous la forme <i>EH</i>=√ donnez une valeur approchée du résultat : <i>EH</i>≈
ŝ	b) Affichez la longueur du segment [<i>EH</i>] avec un clic-droit, Propriétés / Afficher l'étiquette, choisir « Valeur »).
	Attention : la vérification graphique ne permet pas d'être sûr d'avoir raison. Par exemple, si vous trouvez une distance égale à $\sqrt{27}$ et si la vraie réponse est $\sqrt{26,97}$ alors vous ne verrez pas forcément la différence dans Geogebra.
	6°) Calculer les valeurs exactes de <i>EF</i> et de <i>FH</i> , contrôlez avec une valeur approchée de ces distances. 7°) Le triangle <i>EFH</i> est-il rectangle ?

Vérifiez en affichant un angle...

Exercice 4

Démarrez Geogebra 🕎.

10) Crián

• • • •

8.0	$\begin{array}{c} A (-4; 4) \\ C (8; -2) \end{array} \begin{array}{c} B (3; 3) \\ D (1; -1) \end{array}$
	 2°) Calculez les coordonnées de <i>K</i>, milieu de [<i>BD</i>]. 3°) a) Quelle semble être la nature du quadrilatère <i>ABCD</i> ? b) Justifiez cette conjecture (il y a plusieurs démonstrations). 4°) On cherche dans cette question les angles du quadrilatère <i>ABCD</i>. a) En utilisant la trigonométrie, déterminez une mesure approchée de l'angle DAB . b) En déduire une mesure approchée de l'angle ABC
¢	Vérifiez vos résultats.
	5°) Calculez l'aire exacte du quadrilatère <i>ABCD</i> .

1

Exercice 5

0

Soient *x* et *y* deux nombres positifs. B appartient au segment [AC] et AB = x, BC = y.

1°) Faîtes la figure pour différentes valeurs entières de x et de y(on pourra utiliser Geogebra).

Mesurer à chaque fois la longueur AE.

2°) Émettre une conjecture sur l'expression de la longueur AE en fonction de *x* et de *y*.

3°) Dans un repère

On se place dans un repère (A ; I ; J), où B (x ; 0) et E (0 ; e).

a) Donnez les coordonnées de C et de D.

b) Sachant que EBD est rectangle, déterminez e.

4°) Sans repère

Comparez les angles \widehat{AEB} et \widehat{CBD} . En déduire la relation conjecturée.

