TP : études de fonctions liées à la géométrie

Exercice I : les fonctions avec Geogebra

Il existe deux modes de Geogebra essentiels concernant les fonctions :

- le mode « Graphique (2D) », où peuvent cohabiter des courbes de fonctions, des points, des vecteurs, etc. Les calculs qui y sont faits sont en valeur approchée.
- Le mode « Calcul formel » qui permet des calculs en valeur exacte.

Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{3x^2 - 5x + 1}{x^2 + 3}$$

C)	Affichage de la courbe de <i>f</i> : tapez dans 💿 Saisie:
Mode	$\frac{(3x^2 - 5x + 1)}{(x^2 + 3)}$ Geogebra appelle cette fonction f
Graphique	On pouvait aussi taper :
	$f(x) = (3x^2 - 5x + 1)/(x^2 + 3)$
	Placement d'un point sur la courbe, trois cas de figures :
	• utiliser • pour placer un point quelconque sur la courbe, qu'on pourra ensuite
	déplacer avec 💊 ;
	• taper dans Saisie : (1/3,f(1/3)) pour placer le point d'abscisse 1/3 (et avoir au
	passage l'image <i>approximative</i> de 1) ;
	 taper dans Saisie : y = 2 pour tracer la droite d'équation y = 2 puis utiliser
	l'outil \succ pour obtenir les points de la courbe d'ordonnée 2.

Ċ	Ouvrez une nouvelle fenêtre et affichez le mode « Calcul formel ».
Mode Calcul formel	Entrez ceci : $f(x)=(3x^2 - 5x+1)/(x^2+3)$
	rien ne se passe.
	Entrez maintenant ceci : $f(x) := (3x^2 - 5x + 1)/(x^2 + 3)$
	et la fonction f est définie pour Geogebra.

-

Remarque : dans le mode « Calcul formel », le = sert surtout dans les équations ; pour définir une fonction dans ce mode, on utilise un := à la place du =.

Exercice II : les fonctions avec Geogebra

Soit *ABCD* un carré de côté 8. On place sur le segment [*AB*] un point *M* (mobile) et on construit, à l'intérieur du carré *ABCD* :

- un petit carré ;
- un triangle

de la façon décrite sur cette figure :

On obtient ainsi un logo formé du petit carré et du triangle.

On s'intéresse dans cet exercice à l'aire de ce logo.

On s'intéresse aux trois problèmes indépendants suivants :

- problème 1 : quelle est l'aire quand AM = 5?
- problème 2 : pour quelle position de *M* l'aire est-elle maximale ?
- problème 3 : pour quelle position de *M* l'aire est-elle égale à 30 ?

Approche 1 : utilisation de la figure

1°) Recréez la figure dans Geogebra et répondez aux problèmes en valeur approchée.

Approche 2 : utilisation d'une fonction

C

3°) En utilisant cette fonction, retrouvez les réponses aux trois problèmes en valeur approchée puis en valeur exacte.

Exercice III

On considère la figure ci-dessous, pour laquelle AB = 8, AD = 4 et BC = 3 et où M est un point variable sur le segment [AB].

Problèmes :

- problème 1 : pour quelle(s) position(s) de *M* les longueurs *DM* et *MC* sont-elles égales ?
- problème 2 : pour quelle(s) position(s) de *M* les droites (*DM*) et (*MC*) sont-elles perpendiculaires ?

Approche informatique

Reproduisez la figure et conjecturez les solutions (approchées) aux deux problèmes.

Approche géométrique (construction)

 1°) Par quelle construction géométrique obtient-on le (ou les) point(s) M dans le cas du problème 1 ?
 2°) Même question pour le problème 2. Indication : pensez au segment [*DC*].

Approche numérique

 3°) a) On note x la longueur AM. Écrivez en fonction de x les nombres DM² et MC². b) Résoudre alors le problème 1.
 4°) a) Calculez la longueur <i>DC</i>. b) Dans le cadre du problème 2, en utilisant le fait que DMC est rectangle, prouvez que x est solution de l'équation x² - 8 x + 12 = 0. c) Déduisez-en la réponse exacte au problème 2.

Vérifiez la réponse au c).